171 lines
5.5 KiB
Rust
171 lines
5.5 KiB
Rust
//! Task management implementation
|
|
//!
|
|
//! Everything about task management, like starting and switching tasks is
|
|
//! implemented here.
|
|
//!
|
|
//! A single global instance of [`TaskManager`] called `TASK_MANAGER` controls
|
|
//! all the tasks in the operating system.
|
|
//!
|
|
//! Be careful when you see `__switch` ASM function in `switch.S`. Control flow around this function
|
|
//! might not be what you expect.
|
|
|
|
mod context;
|
|
mod switch;
|
|
|
|
#[allow(clippy::module_inception)]
|
|
mod task;
|
|
|
|
use crate::config::MAX_APP_NUM;
|
|
use crate::loader::{get_num_app, init_app_cx};
|
|
use crate::sync::UPSafeCell;
|
|
use lazy_static::*;
|
|
use switch::__switch;
|
|
use task::{TaskControlBlock, TaskStatus};
|
|
|
|
pub use context::TaskContext;
|
|
|
|
/// The task manager, where all the tasks are managed.
|
|
///
|
|
/// Functions implemented on `TaskManager` deals with all task state transitions
|
|
/// and task context switching. For convenience, you can find wrappers around it
|
|
/// in the module level.
|
|
///
|
|
/// Most of `TaskManager` are hidden behind the field `inner`, to defer
|
|
/// borrowing checks to runtime. You can see examples on how to use `inner` in
|
|
/// existing functions on `TaskManager`.
|
|
pub struct TaskManager {
|
|
/// total number of tasks
|
|
num_app: usize,
|
|
/// use inner value to get mutable access
|
|
inner: UPSafeCell<TaskManagerInner>,
|
|
}
|
|
|
|
/// Inner of Task Manager
|
|
pub struct TaskManagerInner {
|
|
/// task list
|
|
tasks: [TaskControlBlock; MAX_APP_NUM],
|
|
/// id of current `Running` task
|
|
current_task: usize,
|
|
}
|
|
|
|
lazy_static! {
|
|
/// Global variable: TASK_MANAGER
|
|
pub static ref TASK_MANAGER: TaskManager = {
|
|
let num_app = get_num_app();
|
|
let mut tasks = [TaskControlBlock {
|
|
task_cx: TaskContext::zero_init(),
|
|
task_status: TaskStatus::UnInit,
|
|
}; MAX_APP_NUM];
|
|
for (i, task) in tasks.iter_mut().enumerate() {
|
|
task.task_cx = TaskContext::goto_restore(init_app_cx(i));
|
|
task.task_status = TaskStatus::Ready;
|
|
}
|
|
TaskManager {
|
|
num_app,
|
|
inner: unsafe {
|
|
UPSafeCell::new(TaskManagerInner {
|
|
tasks,
|
|
current_task: 0,
|
|
})
|
|
},
|
|
}
|
|
};
|
|
}
|
|
|
|
impl TaskManager {
|
|
/// Run the first task in task list.
|
|
///
|
|
/// Generally, the first task in task list is an idle task (we call it zero process later).
|
|
/// But in ch3, we load apps statically, so the first task is a real app.
|
|
fn run_first_task(&self) -> ! {
|
|
let mut inner = self.inner.exclusive_access();
|
|
let task0 = &mut inner.tasks[0];
|
|
task0.task_status = TaskStatus::Running;
|
|
let next_task_cx_ptr = &task0.task_cx as *const TaskContext;
|
|
drop(inner);
|
|
let mut _unused = TaskContext::zero_init();
|
|
// before this, we should drop local variables that must be dropped manually
|
|
unsafe {
|
|
__switch(&mut _unused as *mut TaskContext, next_task_cx_ptr);
|
|
}
|
|
panic!("unreachable in run_first_task!");
|
|
}
|
|
|
|
/// Change the status of current `Running` task into `Ready`.
|
|
fn mark_current_suspended(&self) {
|
|
let mut inner = self.inner.exclusive_access();
|
|
let current = inner.current_task;
|
|
inner.tasks[current].task_status = TaskStatus::Ready;
|
|
}
|
|
|
|
/// Change the status of current `Running` task into `Exited`.
|
|
fn mark_current_exited(&self) {
|
|
let mut inner = self.inner.exclusive_access();
|
|
let current = inner.current_task;
|
|
inner.tasks[current].task_status = TaskStatus::Exited;
|
|
}
|
|
|
|
/// Find next task to run and return task id.
|
|
///
|
|
/// In this case, we only return the first `Ready` task in task list.
|
|
fn find_next_task(&self) -> Option<usize> {
|
|
let inner = self.inner.exclusive_access();
|
|
let current = inner.current_task;
|
|
(current + 1..current + self.num_app + 1)
|
|
.map(|id| id % self.num_app)
|
|
.find(|id| inner.tasks[*id].task_status == TaskStatus::Ready)
|
|
}
|
|
|
|
/// Switch current `Running` task to the task we have found,
|
|
/// or there is no `Ready` task and we can exit with all applications completed
|
|
fn run_next_task(&self) {
|
|
if let Some(next) = self.find_next_task() {
|
|
let mut inner = self.inner.exclusive_access();
|
|
let current = inner.current_task;
|
|
inner.tasks[next].task_status = TaskStatus::Running;
|
|
inner.current_task = next;
|
|
let current_task_cx_ptr = &mut inner.tasks[current].task_cx as *mut TaskContext;
|
|
let next_task_cx_ptr = &inner.tasks[next].task_cx as *const TaskContext;
|
|
drop(inner);
|
|
// before this, we should drop local variables that must be dropped manually
|
|
unsafe {
|
|
__switch(current_task_cx_ptr, next_task_cx_ptr);
|
|
}
|
|
// go back to user mode
|
|
} else {
|
|
panic!("All applications completed!");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// run first task
|
|
pub fn run_first_task() {
|
|
TASK_MANAGER.run_first_task();
|
|
}
|
|
|
|
/// rust next task
|
|
fn run_next_task() {
|
|
TASK_MANAGER.run_next_task();
|
|
}
|
|
|
|
/// suspend current task
|
|
fn mark_current_suspended() {
|
|
TASK_MANAGER.mark_current_suspended();
|
|
}
|
|
|
|
/// exit current task
|
|
fn mark_current_exited() {
|
|
TASK_MANAGER.mark_current_exited();
|
|
}
|
|
|
|
/// suspend current task, then run next task
|
|
pub fn suspend_current_and_run_next() {
|
|
mark_current_suspended();
|
|
run_next_task();
|
|
}
|
|
|
|
/// exit current task, then run next task
|
|
pub fn exit_current_and_run_next() {
|
|
mark_current_exited();
|
|
run_next_task();
|
|
}
|